Genetic Algorithm Based Optimisation of End Milling Parameters

نویسندگان

  • Franci CUS
  • Joze BALIC
  • Uros ZUPERL
چکیده

The paper proposes a new optimization technique based on genetic algorithms for the determination of the cutting parameters in machining operations. In metal cutting processes, cutting conditions have an influence on reducing the production cost and time and deciding the quality of a final product. This paper presents a new methodology for continual improvement of cutting conditions with GA (Genetic Algorithms). It performs the following: the modification of recommended cutting conditions obtained from a machining data, learning of obtained cutting conditions using neural networks and the substitution of better cutting conditions for those learned previously by a proposed GA. Operators usually select the machining parameters according to handbooks or their experience, and the selected machining parameters are usually conservative to avoid machining failure. Compared to traditional optimisation methods, a GA is robust, global and may be applied generally without recourse to domain-specific heuristics. Experimental results show that the proposed genetic algorithm-based procedure for solving the optimization problem is both effective and efficient, and can be integrated into an intelligent manufacturing system for solving complex machining optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimisation of shock absorber process parameters using failure mode and effect analysis and genetic algorithm

The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and ...

متن کامل

Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling

Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...

متن کامل

Optimisation of assembly scheduling in VCIM systems using genetic algorithm

Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is ...

متن کامل

Genetic Algorithm Optimization of Operating Parameters for Multiobjective Multipass End Milling

Genetic Algorithm are capable of handling a large number of design parameters and work for optimization problems that have discontinues or non-differentiable multidimensional solution spaces, making them ideal for optimization of machining parameters. Current paper is based on Genetic Algorithm (GA) for optimization of process parameters (e.g. feed and speed) for multi-objective multi pass end ...

متن کامل

بهینهجسازی لایهجچینی ورقجهای کامپوزیتی تحت بار ضربهجای کوبش با بهرهجگیری از روش الگوریتم ژنتیک

Optimisation of stacking sequence for composite plates under slamming impact loads using genetic algorithm method is studied in this paper. For this purpose, slamming load is assumed to have a uniform distribution with a triangular-pulse type of intensity function. In order to perform optimisation based on the genetic algorithm method, a special code is written in MATLAB software environment. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003